Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal fin
نویسندگان
چکیده
The ability of zebrafish to fully regenerate its caudal fin has been explored to better understand the mechanisms underlying de novo bone formation and to develop screening methods towards the discovery of compounds with therapeutic potential. Quantifying caudal fin regeneration largely depends on successfully measuring new tissue formation through methods that require optimization and standardization. Here, we present an improved methodology to characterize and analyse overall caudal fin and bone regeneration in adult zebrafish. First, regenerated and mineralized areas are evaluated through broad, rapid and specific chronological and morphometric analysis in alizarin red stained fins. Then, following a more refined strategy, the intensity of the staining within a 2D longitudinal plane is determined through pixel intensity analysis, as an indicator of density or thickness/volume. The applicability of this methodology on live specimens, to reduce animal experimentation and provide a tool for in vivo tracking of the regenerative process, was successfully demonstrated. Finally, the methodology was validated on retinoic acid- and warfarin-treated specimens, and further confirmed by micro-computed tomography. Because it is easily implementable, accurate and does not require sophisticated equipment, the present methodology will certainly provide valuable technical standardization for research in tissue engineering, regenerative medicine and skeletal biology.
منابع مشابه
Impaired caudal fin‐fold regeneration in zebrafish deficient for the tumor suppressor Pten
Zebrafish are able to completely regrow their caudal fin-folds after amputation. Following injury, wound healing occurs, followed by the formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. Here we show that, surprisingly, the phosphatase and tumor suppressor Pten, an antagonist of phosphoinositide-3-kinase (PI3K) signaling, is r...
متن کاملThe Regenerative Capacity of the Zebrafish Caudal Fin Is Not Affected by Repeated Amputations
BACKGROUND The zebrafish has the capacity to regenerate many tissues and organs. The caudal fin is one of the most convenient tissues to approach experimentally due to its accessibility, simple structure and fast regeneration. In this work we investigate how the regenerative capacity is affected by recurrent fin amputations and by experimental manipulations that block regeneration. METHODOLOG...
متن کاملLife-long preservation of the regenerative capacity in the fin and heart in zebrafish
The zebrafish is a widely used model animal to study the regeneration of organs, such as the fin and heart. Their average lifetime is about 3 years, and recent studies have shown that zebrafish exhibit aging-related degeneration, suggesting the possibility that aging might affect regenerative potential. In order to investigate this possibility, we compared regeneration of the fin and heart afte...
متن کاملShp2–Mitogen-Activated Protein Kinase Signaling Drives Proliferation during Zebrafish Embryo Caudal Fin Fold Regeneration
Regeneration of the zebrafish caudal fin following amputation occurs through wound healing, followed by formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. We show that ptpn11a-/- ptpn11b-/- zebrafish embryos, lacking functional Shp2, fail to regenerate their caudal fin folds. Rescue experiments indicated that Shp2a has a functi...
متن کاملRegenerative growth is impacted by TCDD: gene expression analysis reveals extracellular matrix modulation.
Adult zebrafish can completely regenerate their caudal fin following amputation. This complex process is initiated by the formation of an epithelial wound cap over the amputation site by 12 h post amputation (hpa). Once the cap is formed, mesenchymal cells proliferate and migrate from sites distal to the wound plane and accumulate under the epithelial cap forming the blastemal structure within ...
متن کامل